Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut
نویسندگان
چکیده
We consider the network design problem which consists in determining at minimum cost a 2-edge connected network such that the shortest cycle (a “ring”) to which each edge belongs, does not exceed a given length K. We identify a class of valid inequalities, called cycle inequalities, valid for the problem and show that this inequalities together with the so-called cut inequalities yield an integer programming formulation of the problem in the space of the natural design variables. We then study the polytope associated with that problem and describe further classes of valid inequalities. We give necessary and sufficient conditions for these inequalities to be facet defining. We study the separation problem associated with these inequalities. In particular, we show that the cycle inequalities can be separated in polynomial time when K ≤ 4. We develop a Branch-and-Cut algorithm based on these results and present extensive computational results.
منابع مشابه
Two-Connected Networks with Rings of Bounded Cardinality
We study the problem of designing at minimum cost a two-connected network such that each edge belongs to a cycle using at most K edges. This problem is a particular case of the two-connected networks with bounded meshes problem studied by Fortz, Labbé and Maffioli [6]. In this paper, we compute a lower bound on the number of edges in a feasible solution, we show that the problem is strongly NP-...
متن کاملWhen does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
متن کاملPolyhedral Computations for the Simple Graph Partitioning Problem
The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each containing no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we present a branch-and-cut algorithm for the problem that uses several classes of facet-defining inequalities as cuttingplanes. These are b-tree, clique, cycl...
متن کاملMathematical Programming Manuscript No. Exact and Heuristic Algorithms for the Design of Survivable Networks with Bounded Rings
We study the problem of designing at minimum cost a two-connected network such that each edge belongs to a cycle whose length does not exceed a given bound. This problem was rst studied by Fortz, Labb e and Maaoli 7]. Several classes of valid inequalities for this problem were proposed 5{7]. We study here the separation problems associated to these inequalities and their integration in a Branch...
متن کاملSufficient conditions for maximally edge-connected and super-edge-connected
Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 105 شماره
صفحات -
تاریخ انتشار 2006